本文是关于“无锡家长必看无锡新吴区新高一数学辅导班推荐榜首今日一览”的介绍。
高考一定程度上也决定孩子未来的发展方向和发展高度,因此家长不得不重 视,既然如此重视,当发现自家孩子高中学习吃力时,就要想办法提供帮助。如果家长自身无法给孩子提供高 中学科知识t的辅导就来寻 求专业机构的邦忙吧!
目前针对高中学生开设的课程包含, 高中的全科辅导和高中学科的单科辅导。辅导分为两种类型,一种是小组课,另外一种就是一 对一辅导。机构的课程还包含艺考文化课的学习,不光是照顾到文化课的考生也是照顾到了艺考生。只要想要到这里学习,都是能够满足的。用全面这两个字形容再好不过了。
1.无锡龙新教育:
作为国内较早一批成立的教学机构,龙门教育:始终坚持骨干教师执教,为学生学习 提供坚实的基础和保障;在教学上,以教学成果和教学质量为核心,从教学理念、教学形 式,教案准备、教学实践,到教学的消化和吸收,全面打造优质的教学平台,为每一位学 生提供高效系统的提升解决方案,帮助学生在短时间内挖掘进步潜力。
2.无锡捷登教育:
一对一辅导的好处在于:可帮助孩子及时补缺补漏。虽然早在十几年前,*就高喊减压的的口号,但是大家都知道这只是一种形式而已,中小学生的学习负担还是较重。每天的学习任务重,作业量大。
3.无锡博大教育:
一对一辅导可以有针对性因材施教。在课堂上,老师授课是针对大多数同学的水平和进度,不可能面面俱到。此时,思维较慢、接受能力较弱的同学,就会会感觉听起课来很吃力,不能够及时吸收新知识。相反,一对一辅导,针对性较强,根据学生的情况因材施教,让学生能够及时理解所学知识,不会留下缺漏。
4.无锡北辰教育:
全程跟踪,多轮摸底测试,科学安排教学,不断扫除知识死角,除班级教学外,适时开展小班训练和助教辅导,提高学生应试能力和得分技巧;
5.无锡学好乐教育:
教育:顾问+省重点学校一线教师+心理辅导专家构成的精良师资团队全程跟踪分析掌握学生学习的优缺点,心理品质,目标动机,兴趣爱好,知识层次和难易知识点,突破教学重点和难点,有针对性地进行辅导。
6.无锡京太教育:
完善的教学与管理:独创“三位一体”家长教师辅导沟通会,免费测试,查找学习症结,建立学生档案,制定有针对性的辅导方案,然后进行全方位的个性化辅导。
7.无锡美博教育:
中小学辅导优秀的教学成果:经本机构辅导的学生,90%以上取得可喜的进步,不少学生考取重点初中,高中和大学,还有学生在中小学生数学、英语奥赛中获得优异成绩。
8.无锡学大教育:
这里提供优质的教师资源,也提供同学们良好的教学环境。老师们熟悉高考考试重点,也带过多届毕业班 学员进行复习,熟悉同学们的学习痛点,针对性复习。一对一授课更让同学们体验到学校的专业,以及强大的 力量。
9.无锡京誉教育:
全程跟踪,多轮摸底测试,科学安排教学,不断扫除知识死角,除班级教学外,适时开展小班训练和助教辅导,提高学生应试能力和得分技巧。
10.无锡金博教育:
中小学辅导积累了丰富的教学管理经验、拥有雄厚的师资力量并建立了优秀的管理团队。腾大教育:中小学凭借一流的师资和科学管理,率先在全国实现了万人讲座和千人课堂的大规模教学,课堂学习充实,教学效果显著。
在数学的学习中同学们要一步一步的做好积累,高中阶段的数学学习有一定的难度,同学们对于教师所准备的教案进行了解对于同学们的学习有很大帮助。下面为大家提供的是高二数学教学圆锥曲线与方程教案,希望大家了解。
一、教学目标
(一)知识教学点
使学生掌握点、直线与圆锥曲线的位置及其判定,重点掌握直线与圆锥曲线相交的有关问题.
(二)能力训练点
通过对点、直线与圆锥曲线的位置关系的研究,培养学生综合运用直线、圆锥曲线的各方面知识的能力.
(三)学科渗透点
通过点与圆锥曲线的位置及其判定,渗透归纳、推理、判断等方面的能力.
二、教材分析
1.重点:直线与圆锥曲线的相交的有关问题.
(解决办法:先引导学生归纳出直线与圆锥曲线的位置关系,再加以应用.)
2.难点:圆锥曲线上存在关于直线对称的两点,求参数的取值范围.
(解决办法:利用判别式法和内点法进行讲解.)
3.疑点:直线与圆锥曲线位置关系的判定方法中△=0不是相切的充要条件.
(解决办法:用图形向学生讲清楚这一点.)
三、活动设计
四、教学过程
(一)问题提出
1.点P(x0,y0)和圆锥曲线C:f(x,y)=0有哪几种位置关系?它们的条件是什么?
引导学生回答,点P与圆锥曲线C的位置关系有:点P在曲线C上、点P在曲线C内部(含焦点区域)、点P在曲线的外部(不含焦点的区域).那么这三种位置关系的条件是什么呢?这是我们要分析的问题之一.
2.直线l:Ax+By+C=0和圆锥曲线C:f(x,y)=0有哪几种位置关系?
引导学生类比直线与圆的位置关系回答.直线l与圆锥曲线C的位置关系可分为:相交、相切、相离.那么这三种位置关系的条件是什么呢?这是我们要分析的问题之二.
(二)讲授新课
1.点M(x0,y0)与圆锥曲线C:f(x,y)=0的位置关系
的焦点为F1、F2,y2=2px(p>0)的焦点为F,一定点为P(x0,y0),M点到抛物线的准线的距离为d,则有:
(由教师引导学生完成,填好小黑板)
上述结论可以利用定比分点公式,建立两点间的关系进行证明.
2.直线l∶Ax+Bx+C=0与圆锥曲线C∶f(x,y)=0的位置关系:
直线与圆锥曲线的位置关系可分为:相交、相切、相离.对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.这三种位置关系的判定条件可引导学生归纳为:
注意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件.
3.应用
求m的取值范围.
解法一:考虑到直线与椭圆总有公共点,由直线与圆锥曲线的位置关系的充要条件可求.
由一名同学演板.解答为:
由椭圆方程及椭圆的焦点在x轴上,知:0
又 ∵直线与椭圆总有公共点,
即(10k)2-4x(m+5k2)×5(1-m)≥0,
亦即5k2≥1-m对一切实数k成立.
∴1-m≤0,即m≥1.
故m的取值范围为m∈(1,5).
解法二:由于直线过定点(0,1),而直线与椭圆总有公共点,所以定点(0,1)必在椭圆内部或边界上,由点与椭圆的位置关系的充要条件易求.
另解:
由椭圆方程及椭圆的焦点在x轴上知:0
又∵直线与椭圆总有公共点.
∴ 直线所经过的定点(0,1)必在椭圆内部或边界上.
故m的取值范围为m∈(1,5),
小结:解法一由直线与圆锥曲线的位置关系的充要条件求,思路易得,但计算量大;解法二由点与圆锥曲线的位置关系的充要条件求,思路灵活,且简捷.
称,求m的取值范围.
解法一:利用判别式法.
并整理得:
∵直线l′与椭圆C相交于两点,
解法二:利用内点法.
设两对称点为P1(x1,y1),P2(x2,y2),P1P2的中点为M(x0,y0),
∴y1+y2=3(x1+x2).(1)
小结:本例中的判别式法和内点法,是解决圆锥曲线上存在两点关于直线的对称的一般方法,类似可解抛物线、双曲线中的对称问题.
练习1:(1)直线过点A(0,1)且与抛物线y2=x只有一个公共点,这样的直线有几条?
(2)过点P(2,0)的直线l与双曲线x2-y2=1只有一个公共点,这样的直线有几条?
由学生练习后口答:(1)3条,两条切线和一条平行于x轴的直线;(2)2条,注意到平行于渐近线的直线与双曲线只有一个交点,故这样的直线也只有2条.
练习2:求曲线C∶x2+4y2=4关于直线y=x-3对称的曲线C′的方程.
由教师引导方法,学生演板完成.解答为:
设(x′,y′)是曲线C上任意一点,且设它关于直线y=x-3的对称点为(x,y).
又(x′,y′)为曲线C上的点,
∴(y+3)2+4(x-3)2=4.
∴曲线C的方程为:4(x-3)2+(y+3)2=4.
(三)小结
本课主要研究了点、直线与圆锥曲线的三种位置关系及重要条件.
五、布置作业
的值.
2.k取何值时,直线y=kx与双曲线4x2-y2=16相交、相切、相离?
3.已知抛物线x=y2+2y上存在关于直线y=x+m对称的相异两点,求m的取值范围.
作业答案:
1.由弦长公式易求得:k=-4
当4-k2=0,k=±2, y=±2x为双曲线的渐近线,直线与双曲线相离
当4-k2≠0时,△=4(4-k2)×(-6)
(1)当△>0,即-2
(2)当△<0,即k<-2或k>2时,直线与双曲线无交点
(3)当△=0,即k=±2时,为渐近线,与双曲线不相切
故当-2
当k≤-2或k≥2时,直线与双曲线相离
教案对于同学们的学习帮助是很大的,上文为大家提供的是高二数学教学圆锥曲线与方程教案,希望同学们能够了解,在数学的学习中取得进步。
专业的文化课辅导和教学服务,并提供无干扰、无顾虑、无隐患的半封闭学习环境。
课程优势众多,从高一到高三知识全覆盖,打造8人—15人、20人—25人、30人—40人多分层教学班型,配备德育校长、教学校长进行管理。全科任课教师、双班主任进行学习管理、德育老师全面负责学生生活管理。在这里体验优质高中的学习与生活,培养自主学习的能力。
另外 学大教育的班级特色也是非常突出的。能够帮助学生建立知识框架体系,从点到面,从表及里,针对不同程度学员学习问题,不断夯实基础知识,实现多维度强化的启发式教学,从而达到举一反三的学习效果。针对高三应届生、往届生、回原户籍地参加考试的学生、复读生、艺考生都可以报名学习!
主要是8人—15人小班精品班型,双优师资进行全时教学和管理,构建一个高效、精细、全面的教育环境。半年全日制为一费制服务体验,无任何隐形消费。由教学校长带头,各学科骨干教师领衔,紧贴高考方向,制定科学的教学计划,同步教研,驱动学生学习动力,教学质量更高。
学大教育高中辅导的教师充分发挥自己的专业优势,用个性化教学,帮助学生有效强化薄弱知识、夯实基础,突破学习中的重点与难点,更好的培养解题能力。
按照不同类型艺考生的学习进度与学习目标,定制学习计划与方案,实现高一到高三知识全覆盖。配备专职优秀双师进行管理,督促学生落实情况,注重文化课的强化,为艺考总分赋能。
中小学全科辅导,各年级各科辅导,都可以直接电话咨询我们,也可以线上咨询哦!
Copyright © 2016-2023 17sok.com All rights reserved. 网站备案号:豫ICP备2023006871号.
该文章由用户自行发布上传,本站不承担任何责任,如有侵权请联系删除。